当前位置: 首页 > 技术文献

多芯屏蔽拖链电缆的串扰分析

时间:2015-10-22 09:07:59

0引言 变电站中存在大量的屏蔽控制电缆,承担变电站一次侧和二次侧的信号传输。随着超高压和特高压输电线路的建设和运行,变电站内的电磁骚扰在不断增强,尤其是变电

 
0引言

    变电站中存在大量的屏蔽控制电缆,承担变

电站一次侧和二次侧的信号传输。随着超高压

和特高压输电线路的建设和运行,变电站内的电

磁骚扰在不断增强,尤其是变电站内常规的开关

操作。由于隔离开关的动作速度相对较慢,会在

变电站内产生幅值大、频率高、陡度高的暂态快

速过电压(Very  Fast  Transient  Overvoltage

VFTO) o VFTO会通过电流互感器和电容式电压

互感器等测量设备直接藕合至与之相连的屏蔽

电缆芯线,在电缆芯线末端造成骚扰,可能使二

次侧的设备误动作或绝缘击穿[ca

    实际的屏蔽电缆芯线是通过成缆工艺绞合

在一起的[}z},利用传统的平行传输线模型会给

计算结果带来很大的误差。本文利用多导体传

输线理论建立了型号为I}VVRP}2的19芯屏

蔽电缆的串扰计算模型。根据电缆的实际结

构,考虑芯线层与层之间绞合的影响,提出了对

平行传输线模型的分布电容和电感矩阵进行修

正的方法,使其能适用于实际电缆的工程计算。

1平行多导体传输线模型

    将屏蔽电缆内的n根芯线和屏蔽层看作是

n+1个导体组成的多导体传输线系统,以屏蔽层

为参考导体,可列出方程[C37 ;

式中:〔Z—芯线相对于屏蔽层的电压向量;

      Z—   nxn维的阻抗矩阵;

      1—芯线的电流向量;

      Y   nxn维的导纳矩阵。由于芯线间的绞合,使芯线末端的电压响应

和芯线之间的串扰分析变得复杂,如果仍用传统

的多导体平行传输线模型计算,会带来工程上不

能接受的误差。

    实际多芯电缆的芯线都是螺旋缠绕的,当

绝缘芯线旋转一周,绝缘芯线沿轴向前进的距

离称为电缆节距。在多芯屏蔽电缆中,中心芯

线相对于其他芯线,其相对位置并没有改变,

因此可以不用考虑因芯线之间的绞合对中心

芯线的影响。对于每一层内部的芯线,芯线之

间的相对位置也没有改变,无需考虑绞合产生

的影响;对于不同层之间的芯线,由于芯线间

的绞合,其相对位置会随着电缆节距作周期性

的变化,此时就必须考虑绞合运动对芯线的

影响。

    有三层芯线的多芯屏蔽电缆截面图如图3

所示。

因此,由式(8)一式(11)可得

    根据式(12),可解得鱿和鱿。将鱿、鱿代

入式(8)、式(9),就可求得传输线终端电压和

图3有二层芯线的多芯屏蔽电缆截而图    在图3中,将第二层芯线看作相对运动的

参考体,第三层芯线围绕着第二层和中心芯线

作绞合运动。在一个电缆节距内,最外一层的

所有芯线相对于第二层和中间芯线而言其位置

是等同的。从电路的角度上说,就是最外一层

所有芯线与第二层和中间芯线的互电容和互电

感相等,即 在一个电缆节距内,对于第二层和中间芯线

而言,最外一层芯线的位置刚好完成一次交换。

因此,可以用没有绞合时芯线的互电容值来

求C}:

图4电缆截而编号小怠图

    芯线首段和末端均与屏蔽层开路,干扰源为

信号发生器产生的250 kHz的方波,峰峰值约为

1.94 V,方波的上升时间约为22 ns。电压干扰信

号的波形如图5所示。  将多芯电缆层与层之间的互电容和互电感

分别用式(13)和式(14)代替,电容矩阵的其他

电容值仍用平行传输线模型的电容值,将得到

的考虑电缆芯线绞合后的分布电容、电感参数

代入式(1)和式(2),就可用平行传输线模型求

解实际绞合电缆的终端响应。

图6  19芯屏蔽电缆试验系统原理图

3计算结果与试验结果分析

    选取图3所示的长度为6 m的19芯屏蔽电

缆。为分析方便,将电缆芯线按照从里到外逆时

针编号。电缆截面编号示意图如图4所示。

3. 1}一扰源在芯线1#

    将图5的电压干扰源加在芯线1“与屏蔽层

之间。考虑芯线的对称排布,只计算芯线1",2",

8"的终端电压响应。干扰源在芯线1“时计算结

果与试验结果如表1所示。

3. 2}一扰源在芯线2#

    电缆芯线两端与屏蔽层开路,其他计算条件

均不变,根据芯线的对称性,对芯线1#,2#,3#,4#,

5},8}所受到的骚扰进行分析。干扰源在芯线2}

时计算结果与试验结果如表2所示。3.31一扰源在芯线}#

    电缆芯线两端与屏蔽层开路,其他计算条件

均不变,根据芯线的对称性,只分析芯线1#v2#v

8#一14“末端所受到的电压骚扰。干扰源在芯

线8“时计算结果与试验结果如表3所示。

    表1一表3可知,当干扰源加在不同芯线时,计

算结果与试验结果的趋势基本一致;稳态电压的最

大误差为8. 69 %,发生在干扰源在芯线1"、计算芯线

8}(最外一层芯线)末端电压响应时;最大相对误差

为28. 00%,发生在干扰源在芯线8}、计算芯线14#

(离芯线8}最远的芯线)末端电压响应时。

    误差产生的原因:
    W电缆长度不是电缆节距的整数倍。多余
的最外一层芯线相对于中心芯线和第二层芯线而
言位置将不再是等效的,多余的部分也就不能用
本文方法对分布电容、电感矩阵进行修正。
    (2)对电缆屏蔽层进行了简化。实际电缆的
屏蔽层为在一层类似塑料的绝缘纸上镀铜,模型
中将其简化为相同厚度的铜皮,影响了屏蔽层阻
抗计算。
    (3)忽略了电缆芯线间的挤压,将实际电缆
内部芯线排列等效为有规则的圆周结构,从而对
求得的分布电容、电感参数造成误差。    (4)计算模型中忽略了测量引线的电阻、电
感以及电容参数对试验结果的影响。
4结语
    利用本文修正后的传输线模型计算了实际
绞合的多芯屏蔽电缆的串扰。计算结果与试验
结果表明,当干扰源加在不同芯线时,稳态值误
差较小,基本满足一般工程计算的需要,验试了
该方法的有效性。误差一方面是由于所选择的
电缆长度不是整数倍的节距引起的,另一方面则
是对实际电缆屏蔽层的简化引起的。
 

相关链接:无相关信息
百度分享:
------分隔线----------------------------
相关文章
相关产品